2007 FP2 Adapted

1. Obtain the general solution of the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=\cos x, \quad x>0,
$$

giving your answer in the form $y=\mathrm{f}(x)$.
(Total 8 marks)
2.

The diagram above shows a sketch of the curve with equation

$$
y=\frac{x^{2}-1}{|x+2|}, \quad x \neq-2
$$

The curve crosses the x-axis at $x=1$ and $x=-1$ and the line $x=-2$ is an asymptote of the curve.
(a) Use algebra to solve the equation $\frac{x^{2}-1}{|x+2|}=3(1-x)$.
(b) Hence, or otherwise, find the set of values of x for which

$$
\frac{x^{2}-1}{|x+2|}<3(1-x)
$$

(3)
(Total 9 marks)
3. \quad A scientist is modelling the amount of a chemical in the human bloodstream. The amount x of the chemical, measured in $\mathrm{mg} l^{-1}$, at time t hours satisfies the differential equation

$$
2 x \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-6\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)^{2}=x^{2}-3 x^{4}, \quad x>0
$$

(a) Show that the substitution $\mathrm{y}=\frac{1}{x^{2}}$ transforms this differential equation into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+y=3 .
$$

(b) Find the general solution of differential equation I.

Given that at time $t=0, x=\frac{1}{2}$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$,
(c) find an expression for x in terms of t,
(d) write down the maximum value of x as t varies.
4.

The diagram above shows a sketch of the curve C with polar equation

$$
r=4 \sin \theta \cos ^{2} \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The tangent to C at the point P is perpendicular to the initial line.
(a) Show that P has polar coordinates $\left(\frac{3}{2}, \frac{\pi}{6}\right)$.

The point Q on C has polar coordinates $\left(\sqrt{2}, \frac{\pi}{4}\right)$.
The shaded region R is bounded by $O P, O Q$ and C, as shown in the diagram above.
(b) Show that the area of R is given by

$$
\begin{equation*}
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\left(\sin ^{2} 2 \theta \cos 2 \theta+\frac{1}{2}-\frac{1}{2} \cos 4 \theta\right) \mathrm{d} \theta \tag{3}
\end{equation*}
$$

(c) Hence, or otherwise, find the area of R, giving your answer in the form $a+b \pi$, where a and b are rational numbers.
5. Find the set of values of x for which

$$
\frac{x+1}{2 x-3}<\frac{1}{x-3}
$$

6.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-y \tan x=2 \sec ^{3} x
$$

Given that $y=3$ at $x=0$, find y in terms of x
7. For the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 x(x+3)
$$

find the solution for which at $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ and $y=1$.
(Total 12 marks)
8. (a) Sketch the curve C with polar equation

$$
\begin{equation*}
r=5+\sqrt{ } 3 \cos \theta, \quad 0 \leq \theta \leq 2 \pi \tag{2}
\end{equation*}
$$

(b) Find the polar coordinates of the points where the tangents to C are parallel to the initial line $\theta=0$. Give your answers to 3 significant figures where appropriate.
(c) Using integration, find the area enclosed by the curve C, giving your answer in terms of π.
9. $\frac{\mathrm{d} y}{\mathrm{~d} x}=y \mathrm{e}^{x^{2}}$.

It is given that $y=0.2$ at $x=0$.
(a) Use the approximation $\frac{y_{1}-y_{0}}{h} \approx\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{0}$, with $h=0.1$, to obtain an estimate of the value of y at $x=0.1$.
(b) Use your answer to part (a) and the approximation $\frac{y_{2}-y_{0}}{2 h} \approx\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{1}$, with $h=0.1$, to obtain an estimate of the value of y at $x=0.2$. Gives your answer to 4 decimal places.
10.

$$
\left(1-x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0 .
$$

At $x=0, y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-1$.
(a) Find the value of $\frac{\mathrm{d}^{3} y}{\mathrm{~d}^{3}}$ at $x=0$.
(b) Express y as a series in ascending powers of x, up to and including the term in x^{3}.
11. (a) Given that $z=\cos \theta+\mathrm{i} \sin \theta$, use de Moivre's theorem to show that

$$
\begin{equation*}
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \tag{2}
\end{equation*}
$$

(b) Express $32 \cos ^{6} \theta$ in the form $p \cos 6 \theta+q \cos 4 \theta+r \cos 2 \theta+\mathrm{s}$, where p, q, r and s are integers.
(c) Hence find the exact value of

$$
\int_{0}^{\frac{\pi}{3}} \cos ^{6} \theta \mathrm{~d} \theta
$$

12. The transformation T from the z-plane, where $z=x+\mathrm{i} y$, to the w-plane, where $w=u+\mathrm{i} v$, is given by

$$
w=\frac{z+\mathrm{i}}{\mathrm{z}}, \quad z \neq 0 .
$$

(a) The transformation T maps the points on the line with equation $y=x$ in the z-plane, other than $(0,0)$, to points on a line l in the w-plane. Find a cartesian equation of l.
(b) Show that the image, under T, of the line with equation $x+y+1=0$ in the z-plane is a circle C in the w-plane, where C has cartesian equation

$$
\begin{equation*}
u^{2}+v^{2}-u+v=0 \tag{7}
\end{equation*}
$$

(c) On the same Argand diagram, sketch l and C.

